skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chiang, Chao-Ching"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. p-type Cr2MnO4 with bandgap 3.01 eV was sputter deposited onto (2¯01) and (001) n-type or semi-insulating β-Ga2O3.The heterojunction of p-type CrMnO4 on n-type Ga2O3 is found to be type II, staggered gap, i.e., the band offsets are such that both the conduction and valence band edges of Ga2O3 are lower in energy than those of the Cr2MnO4. This creates a staggered band alignment, which can facilitate the separation of photogenerated electron-hole pairs. The valence band edge of Cr2MnO4 is higher than that of Ga2O3 by 1.82–1.93 eV depending on substrate orientation and doping, which means that holes in Cr2MnO4 would have a lower energy barrier to overcome to move into Ga2O3. Conversely, the conduction band edge of Cr2MnO4 is higher than that of Ga2O3 by 0.13–0.30 eV depending on substrate doping and orientation, which would create a barrier for electrons in Ga2O3 to move into Cr2MnO4. This heterojunction looks highly promising for p-n junction formation for advanced Ga2O3-based power rectifiers. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Lateral Schottky or heterojunction rectifiers were irradiated with 10 MeV protons and neutrons. For proton irradiation, the forward current of both types of rectifiers decreased by approximately an order of magnitude, with a corresponding increase in on-state resistance. The resultant on/off ratio improved after irradiation because of the larger decrease in reverse current compared to forward current. Both types of rectifiers displayed a shift in forward current and RON curves to lower voltages after irradiation. This could be due to defects created by neutron irradiation introducing deep energy levels within the bandgap of AlN. These deep levels can trap charge carriers, reducing their mobility and increasing the on-state resistance. Transmission electron microscopy showed disorder created at the AlN/NiO interface by neutron irradiation. TCAD simulation was used to study the effects of irradiation with both protons and neutrons. The results confirmed that the irradiation caused a significant reduction in electron concentration and a small increase in the recombination rate. Neutron irradiation can also introduce interface states at the metal or oxide-semiconductor junction of the rectifier. These interface states can modify the effective Schottky barrier height, affecting the forward voltage drop and on-state resistance. 
    more » « less
  3. Abstract 17 MeV proton irradiation at fluences from 3–7 × 1013cm−2of vertical geometry NiO/β-Ga2O3heterojunction rectifiers produced carrier removal rates in the range 120–150 cm−1in the drift region. The forward current density decreased by up to 2 orders of magnitude for the highest fluence, while the reverse leakage current increased by a factor of ∼20. Low-temperature annealing methods are of interest for mitigating radiation damage in such devices where thermal annealing is not feasible at the temperatures needed to remove defects. While thermal annealing has previously been shown to produce a limited recovery of the damage under these conditions, athermal annealing by minority carrier injection from NiO into the Ga2O3has not previously been attempted. Forward bias annealing produced an increase in forward current and a partial recovery of the proton-induced damage. Since the minority carrier diffusion length is 150–200 nm in proton irradiated Ga2O3, recombination-enhanced annealing of point defects cannot be the mechanism for this recovery, and we suggest that electron wind force annealing occurs. 
    more » « less
  4. Minority carrier diffusion length in undoped p-type gallium oxide was measured at various temperatures as a function of electron beam charge injection by electron beam-induced current technique in situ using a scanning electron microscope. The results demonstrate that charge injection into p-type β-gallium oxide leads to a significant linear increase in minority carrier diffusion length followed by its saturation. The effect was ascribed to trapping of non-equilibrium electrons (generated by a primary electron beam) on metastable native defect levels in the material, which in turn blocks recombination through these levels. While previous studies of the same material were focused on probing a non-equilibrium carrier recombination by purely optical means (cathodoluminescence), in this work, the impact of charge injection on minority carrier diffusion was investigated. The activation energy of ∼0.072 eV, obtained for the phenomenon of interest, is consistent with the involvement of Ga vacancy-related defects. 
    more » « less
  5. Forward bias hole injection from 10-nm-thick p-type nickel oxide layers into 10-μm-thick n-type gallium oxide in a vertical NiO/Ga2O3 p–n heterojunction leads to enhancement of photoresponse of more than a factor of 2 when measured from this junction. While it takes only 600 s to obtain such a pronounced increase in photoresponse, it persists for hours, indicating the feasibility of photovoltaic device performance control. The effect is ascribed to a charge injection-induced increase in minority carrier (hole) diffusion length (resulting in improved collection of photogenerated non-equilibrium carriers) in n-type β-Ga2O3 epitaxial layers due to trapping of injected charge (holes) on deep meta-stable levels in the material and the subsequent blocking of non-equilibrium carrier recombination through these levels. Suppressed recombination leads to increased non-equilibrium carrier lifetime, in turn determining a longer diffusion length and being the root-cause of the effect of charge injection. 
    more » « less
  6. It has recently been demonstrated that electron beam injection into p-type β-gallium oxide leads to a significant linear increase in minority carrier diffusion length with injection duration, followed by its saturation. The effect was ascribed to trapping of non-equilibrium electrons (generated by a primary electron beam) at meta-stable native defect levels in the material, which in turn blocks recombination through these levels. In this work, in contrast to previous studies, the effect of electron injection in p-type Ga2O3 was investigated using cathodoluminescence technique in situ in scanning electron microscope, thus providing insight into minority carrier lifetime behavior under electron beam irradiation. The activation energy of ∼0.3 eV, obtained for the phenomenon of interest, is consistent with the involvement of Ga vacancy-related defects. 
    more » « less
  7. The effect of doping in the drift layer and the thickness and extent of extension beyond the cathode contact of a NiO bilayer in vertical NiO/β-Ga2O3 rectifiers is reported. Decreasing the drift layer doping from 8 × 1015 to 6.7 × 1015 cm−3 produced an increase in reverse breakdown voltage (VB) from 7.7 to 8.9 kV, the highest reported to date for small diameter devices (100 μm). Increasing the bottom NiO layer from 10 to 20 nm did not affect the forward current–voltage characteristics but did reduce reverse leakage current for wider guard rings and reduced the reverse recovery switching time. The NiO extension beyond the cathode metal to form guard rings had only a slight effect (∼5%) in reverse breakdown voltage. The use of NiO to form a pn heterojunction made a huge improvement in VB compared to conventional Schottky rectifiers, where the breakdown voltage was ∼1 kV. The on-state resistance (RON) was increased from 7.1 m Ω cm2 in Schottky rectifiers fabricated on the same wafer to 7.9 m Ω cm2 in heterojunctions. The maximum power figure of merit (VB)2/RON was 10.2 GW cm−2 for the 100 μm NiO/Ga2O3 devices. We also fabricated large area (1 mm2) devices on the same wafer, achieving VB of 4 kV and 4.1 A forward current. The figure-of-merit was 9 GW  cm−2 for these devices. These parameters are the highest reported for large area Ga2O3 rectifiers. Both the small area and large area devices have performance exceeding the unipolar power device performance of both SiC and GaN. 
    more » « less
  8. NiO/β-Ga 2 O 3 vertical rectifiers exhibit near-temperature-independent breakdown voltages ( V B ) of >8 kV to 600 K. For 100 μm diameter devices, the power figure of merit ( V B ) 2 / R ON , where R ON is the on-state resistance, was 9.1 GW cm −2 at 300 K and 3.9 GW cm −2 at 600 K. By sharp contrast, Schottky rectifiers fabricated on the same wafers show V B of ∼1100 V at 300 K, with a negative temperature coefficient of breakdown of 2 V K −1 . The corresponding figures of merit for Schottky rectifiers were 0.22 GW cm −2 at 300 K and 0.59 MW cm −2 at 600 K. The on–off ratio remained >10 10 up to 600 K for heterojunction rectifiers but was 3 orders of magnitude lower over the entire temperature range for Schottky rectifiers. The power figure of merit is higher by a factor of approximately 6 than the 1-D unipolar limit of SiC. The reverse recovery times were ∼26 ± 2 ns for both types of devices and were independent of temperature. We also fabricated large area, 1 mm 2 rectifiers. These exhibited V B of 4 kV at 300 K and 3.6 kV at 600 K. The results show the promise of using this transparent oxide heterojunction for high temperature, high voltage applications. 
    more » « less
  9. Vertical geometry NiO/β n-Ga2O/n+ Ga2O3 heterojunction rectifiers with contact sizes from 50 to 200 μm diameter showed breakdown voltages (VB) up to 7.5 kV for drift region carrier concentration of 8 × 1015 cm−3. This exceeds the unipolar 1D limit for SiC and was achieved without substrate thinning or annealing of the epi layer structure. The power figure-of-merit, VB2/RON, was 6.2 GW cm−2, where RON is the on-state resistance (9.3–14.7 mΩ cm2). The average electric field strength was 7.56 MV/cm, approaching the maximum for β-Ga2O3. The on–off ratio switching from 5 to 0 V was 2 × 1013, while it was 3 × 1010–2 × 1011 switching to 100 V. The turn-on voltage was in the range 1.9–2.1 V for the different contact diameters, while the reverse current density was in the range 2 × 10−8–2 × 10−9 A cm−2 at −100 V. The reverse recovery time was 21 ns, while the forward current density was >100 A/cm2 at 5 V. 
    more » « less
  10. BCl 3 is an attractive plasma etchant for oxides because it is a Lewis acid used to scavenge native oxides on many semiconductors due to the strong B–O bonding. We investigated BCl 3 -based dry etching of the NiO/Ga 2 O 3 heterojunction system. BCl 3 /Ar Inductively Coupled Plasmas produced maximum etch rates for NiO up to 300 Å.min −1 and 800 Å.min −1 for β -Ga 2 O 3 under moderate plasma power conditions suitable for low damage pattern transfer. The selectivity for NiO: Ga 2 O 3 was <1 under all conditions. The ion energy threshold for initiation of etching of NiO was between 35–60 eV, depending on the condition and the etch mechanism was ion-driven, as determined by the linear dependence of etch rate on the square root of ion energy incident on the surface. By sharp contrast, the etching of Ga 2 O 3 had a stronger chemical component, without a well-defined ion energy threshold. The as-etched NiO and Ga 2 O 3 surfaces show chlorine residues, which can be removed on both materials by the standard 1NH 4 OH: 10H 2 O or 1HCl: 10H 2 O rinses used for native oxide removal. According to the location of the Cl 2p 3/2 peak, the Cl is ionically bonded. 
    more » « less